Info School Training for Excellence

SAS Analytics Curriculum

Introduction to the SAS Language

- Introduction
- Basic Language: Rules and Syntax
- Creating SAS Data Sets
- The INPUT Statement
- ❖ SAS Data Step Programming Statements Their Uses
- Data Step Processing
- More on INPUT Statement
 - Use of Pointer controls
 - The trailing@ line-hold specifier
 - The trailing@ @ line-hold specifier
 - Uses of RETAIN statement
 - The use of line pointer controls
- Using SAS Procedures

More on SAS Programming and some Applications

- More on the DATA and PROC STEPS
 - Reading data from files
 - Combing SAS data sets
 - Saving and retrieving permanent SAS data Sets
 - User- defined in formats and formats
 - Creating SAS data sets in procedure steps
- SAS Macros Concepts
 - Creating modular code with Macros
 - Adding parameters to Macros

- SAS Procedures for Computing Statistics
 - The UNIVARIATE procedures
 - The FREQ procedure
- Some Useful Base SAS Procedures
 - The PLOT procedures
 - The CHART procedures
 - The TABULATE procedure

Statistical Analysis of Regression Models

- ❖ An Introduction to Simple Linear Regression
 - Simple linear regression using PROC REG
 - Lack of fit test using PROC ANOVA
 - Diagnostics use of case statistics
 - Predictions of new y values using regressions
- An Introduction to Multiple Regression Analysis
 - Multiple regression analysis using PROC REG
 - Case Statistics and residual analysis
 - Residual Plots
 - Examining relationships among regression variables
- Types of Sums of Squares Computed in PROC REG and PROC GLM
 - Model comparison technique and extra sum of squares
 - Types of sums of squares in SAS
- Subset selection using PROC REG for Model selection
 - Subset selection using PROC REG
 - Other options available in PROC REG for model selection
- Inclusion of squared Terms Product terms in Regression Models
 - Including interaction terms in the model
 - Comparing slopes of regression lines using interaction
 - Analysis of models with higher-order terms with PROC REG

Analysis of Variance Model

- Introduction
 - Treatment Structure
 - Experimental Designs
 - Linear Models
- One-way Classification
 - Using PROC ANOVA to analyze one-way Classifications
 - Making preplanned (or a priori) comparisons using PROC GLM
 - Testing orthogonal polynomials using contrasts
- One-Way Analysis of Covariance
 - Using PROC GLM to perform one-way covariance analysis
 - One-way covariance analysis: Testing for equal slopes
- A two Factorial in a Completely Randomized Design
 - Analysis of a two-way factorial using PROC GLM
 - Residual Analysis of Interaction
- Two-Way Factorial: Analysis of Interaction
- Two-Way Factorial: Unequal Sample sizes
- Two way Classification: Randomized Complete Block Design
 - Using PROC GLM to analyze a RCBD
 - Using PROC GLM to test for nonadditivity

Analysis of Variance: Random and Mixed Effects Models

- Introduction
- One-way Random Effects Model
 - Using PROC GLM to analyze one-way Random Effects Models
 - Using PROC MIXED to analyze one-way Random Effects Models

- Two –way Crossed Random Effects Model
 - Using PROC GLM and PROC MIXED to analyze two –way Crossed Random Effects
 Model
 - Randomized complete block design: Blocking when treatment factors are random
- Two-Way Nested Random Effects Model
 - Using PROC GLM to analyze two-way nested random effects models
 - Using PROC MIXED to analyze two-way Nested Random Effects Models
- ❖ Two-way Mixed Effects Models
 - Two-way Mixed Effects Models: Randomized Complete Blocks Design
 - Two-way Mixed Effects Models: Crossed Classification
 - Two-way Mixed Effects Models: Nested Classification
- Models with Random and Nested Effects for More Complex Experiments
 - Models for nested factorials
 - Models for split-plot experiments
 - Analysis of split-plot experiments using PROC GLM
 - Analysis of split-plot experiments using PROC MIXED